A benchtop version of the world’s smallest battery — its anode a single nanowire one seven-thousandth the thickness of a human hair —has been created by a team led by Sandia National Laboratories researcher Jianyu Huang.
To better study the anode’s characteristics, the tiny rechargeable, lithium-based battery was formed inside a transmission electron microscope (TEM) at the Center for Integrated Nanotechnologies (CINT), a Department of Energy research facility jointly operated by Sandia and Los Alamos national laboratories.
The Medusa twist: formerly unobserved increase in length and twist of the anode in a nanobattery.
Because battery technology hasn’t developed as quickly as the electronic devices they power, a greater and greater percentage of the volume of these devices is taken up by the batteries needed to keep them running. Now a team of researchers working at the Center for Integrated Nanotechnologies (CINT) is claiming to have created the world’s smallest battery, and although the tiny battery won’t be powering next year’s mobile phones, it has already provided insights into how batteries work and should enable the development of smaller and more efficient batteries in the future.
The tiny rechargeable, lithium-based battery was created by a team led by Sandia National Laboratories researcher Jianyu Huang. It consists of a bulk lithium cobalt cathode three millimeters long, an ionic liquid electrolyte, and has as its anode a single tin oxide (Sn02) nanowire 10 nanometers long and 100 nanometers in diameter – that’s one seven-thousandth the thickness of a human hair.
0 comments:
Post a Comment